博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Memory, Un/Weakly/Semi-supervised, One/Zero-shot
阅读量:6677 次
发布时间:2019-06-25

本文共 2397 字,大约阅读时间需要 7 分钟。

Memory Network:

Most referenced

  1. Memory Networks,

  2. End-To-End Memory Networks,

  3. Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks,

  4. Large-scale Simple Question Answering with Memory Networks,

  5. Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems,

  6. The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations,

  7. Learning End-to-End Goal-Oriented Dialog,

ICML2016

  1. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, 1

  2. Meta-Learning with Memory-Augmented Neural Networks,

  3. Associative Long Short-Term Memory,

  4. Recurrent Orthogonal Networks and Long-Memory Tasks,

  5. Dynamic Memory Networks for Visual and Textual Question Answering,

  6. Control of Memory, Active Perception, and Action in Minecraft,

One Shot

CVPR16

  1. One-Shot Learning of Scene Locations via Feature Trajectory Transfer,

ICML16

  1. One-Shot Generalization in Deep Generative Models,

Zero Shot

CVPR16

  1. Multi-Cue Zero-Shot Learning With Strong Supervision,

  2. Latent Embeddings for Zero-Shot Classification,

  3. Less Is More: Zero-Shot Learning From Online Textual Documents With Noise Suppression,

  4. Synthesized Classifiers for Zero-Shot Learning,

  5. Fast Zero-Shot Image Tagging,

  6. Zero-Shot Learning via Joint Latent Similarity Embedding,

Unsupervised

Most referenced

  1. Unsupervised Learning of Video Representations using LSTMs,

  2. Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks,

ICML2016

  1. A Deep Learning Approach to Unsupervised Ensemble Learning,

  2. Augmenting Supervised Neural Networks with Unsupervised Objectives for Large-scale Image Classification,

  3. Unsupervised Deep Embedding for Clustering Analysis,

CVPR2016

  1. Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks,

  2. Joint Unsupervised Learning of Deep Representations and Image Clusters,

Semi/Weakly-supervised

Most referenced

  1. Semi-supervised Sequence Learning,

  2. Semi-supervised Learning with Deep Generative Models,

ICML2016

  1. Weakly- and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation,

CVPR2016

  1. NetVLAD: CNN architecture for weakly supervised place recognition,

  2. Weakly Supervised Deep Detection Networks,

  3. WELDON: Weakly Supervised Learning of Deep Convolutional Neural

    Networks,

  4. Weakly Supervised Object Boundaries,

  5. Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data Is Continuous and Weakly Labelled

转载地址:http://trgxo.baihongyu.com/

你可能感兴趣的文章
$.each 和$(selector).each()的区别
查看>>
45435
查看>>
JSON格式自动解析遇到的调用方法问题.fromJson() ..readValue()
查看>>
Crystal Reports for Visual Studio 2015 安装
查看>>
iOS UI 15 网络编程下载 图片 音乐 大文件 视频 get/ post方法
查看>>
Android开发之50个常见实用技巧——活用布局
查看>>
linux文件系统 - 初始化(二)
查看>>
Python的可视化图表工具集
查看>>
《条目二十九:对于逐个字符的输入请考虑istreambuf_iterator》
查看>>
Python的优点与功能
查看>>
sed实例精解--例说sed完整版
查看>>
apache安装mod_ssl.so 出现 undefined symbol: ssl_cmd_SSLPassPhraseDialog错误解决
查看>>
概念,
查看>>
招财铃,负责模块,
查看>>
三个文件,
查看>>
webpack的总结
查看>>
hibernate 一级缓存和二级缓存
查看>>
HDU1576 A/B,模拟元
查看>>
javac不是内部或外部命令
查看>>
easuyi datatox 选择年月
查看>>